INRAA = 7—~1 - __ i

EEF E: JE E E E E. e B "u B F s e s B T o : i!ﬂg
IDIVI T UL LiIIfialiLclliicliwn 1o/ Jvo
rnﬂ =l£==_—_=~_ _—:_-ga '5'-‘5% 7 -E

VINO LITTOUUUIILI IDIVIT 7.1

-_—l _~_ __ 1 _ ~_ . 1

11€ rardé Lo NMurnues!

Larry Bolhuis
Frankeni Technology Consulting, LLC.

Franken

Franken

VAT .
1YiV2 alY.

'y

A Brief history of recent CL Enhancement:

» In OS/400 V5R1 GUI command prompting was
added to iNav and other interfaces. This was ‘cool.’

- Implementation is XML to a Java applet. Used in WDSC,
iNav, Access for web, and others.

» In OS/400 V5R2 the ability to digitally sign your
command objects was introduced. This was ‘a
waste of time.’

> It was the only thing CL got in V5R2... ®
» In i5/0S V5R3 we got new data types, increased

parameter lengths and counts, new commands and
more. These are ‘Awesome’

» InIBM i 5.4 a continuation of what was delivered in
V5R3 is provided. This is ‘Spectacular.’

» In IBM i 6.1 previous enhancements have been
enhanced! This is ‘Encouraging’.

______ InIBM i 7.1 more enhancements arrive. This

IR -

» We will review all of the new stuff in the last several
releases of CL and what’s coming in the next
release.

» Changes will be covered by topic rather than by
release and reviewed in the order normally

encountered in the average CL program.

Release will be noted on each enhancement.

*CMD (Command) objects will be covered as well.

i S isa S8 s B
|]

Variable Types

<
<
)
<
<
)
<
<
)
<
<
)

Parameter enhancements
Multiple File Support
Declare Processing Options
Source member Include
Control Flow Enhancements
Subroutines

Command Enhancements
New APl QCAVFYNM

Proxy Command

Command Documentation
Future CL Enhancements

NiNnt RA
1 L - T

\/
¥

¢»)
W
U1

>

J

C:'

I vdiiduJ

ﬂl::»

» Add TYPE(*PTR) on DCL statement
» New %ADDRESS built-in to set pointer

» New %OFFSET built-in to store pointer
offset

» Add *BASED attribute on DCL statement
» Add *DEFINED attribute on DCL statement
» Allow pointer to be used with %SUBSTRING

» Makes many functions available to ILE CL
> Full record-level file I/0O
> String functions

b}

:
pu
g

J
=
=

= -
I3
y 4 |
7

<
Q.
ELJ
()
q¥)
(@)

|
<
(@ |
Ad

» New TYPE values on DCL statement

» Value
> *PTR - Pointer
» DCL &SAMPLEPTR *PTR
- Declares a pointer CL variable named &SAMPLEPTR which
is a space pointer at the machine interface level
» DCL &CHARPTR *PTR ADDRESS(&CHAR)

- Declares a pointer CL variable, & CHARPTR that is
populated with the address of previously defined
variable & CHAR

» Pointers are 16 bytes long

- 128 Bit Address Space yields 16 Bytes.

| PN

b

’e)
D

=

S

h)

===
Y.V

Vi

w
W
(®
=y
()
==

a,‘

-t

EvAar
N\ CLAaAli

/* Character variable in Automatic Storage */
DCL &CHAR *CHAR LEN(10)

/* Pointer variable with address of &CHAR */
DCL &PTR *PTR ADDRESS(&CHAR)

» The second DCL command declares a pointer
variable which is initialized to point to the
&CHAR variable in the program's automatic
storage.

A
7
ﬁ

| |

(W
=

70 FalfaC \ Y BN
1aAliICo V

» Parms:

- STG(*BASED) (Storage is based on a pointer)
- Default for this new parm is *AUTO for Automatic Storage
- This is for compatibility with all previous OS versions
- BASPTR(&PTR1) (Points to the storage for the
variable.)

» DCL & CHART1 *CHAR 10 STG(*BASED)
BASPTR(&PTRT)

- Declares a 10-byte character CL variable named
&CHART that is based on the pointer CL variable
&PTRI1

"
=

- = V- N

X

[T
Q)

T
Q)

L/

(@
i

A
A

CAd

/ * A pointer variable */
DCL &PTR2 *PTR2
/* A variable based on the pointer variable above. */

DCL &CHAR2 *CHAR LEN(10) STG(*BASED)
BASPTR(&PTR2)

» The second DCL command declares a character variable
which is found at the location addressed by the &PTR2
variable.

» Before &CHAR2 can be used, &PTR2 must be initialized
to a valid address by using the %ADDRESS built-in
function.

L !
il
J

C
(T

)
v

¢
==
)
»
fgl '
iy
|
!

(T
b
<
Q)
-
Y

Q
C

A
4

(T
"

|
<<
(W
/

» Comprised of two new parms on DCL
statement

» Parms:
> STG(*DEFINED)
- Storage is Defined within another var.
- Requires the following:
DEFVAR(&CHAR3 3)

Part one defines the host variable this variable is defined
inside of.

- Part two designates the starting position within the host
variable

» Effectivly data structures and subfields for CL

] B u s] '] ']
I) (e s pn = =l LV e pae = e | = =
lllllllll

/* Character variable in Automatic Storage */
DCL &CHAR3 *CHAR LEN(100)

/* Defined variable hosted by above variable */

DCL &DEC1 *DEC LEN(10 5) STG(*DEFINED)
DEFVAR(&CHAR3 3)

- Declares a 10-digit (packed) decimal CL variable,
&DECT

- &DECT1 is hosted by & CHAR3 (which is in automatic
storage)

- &DECT begins in position 3 of &CHAR3

C
T

wt

=\I
(B

0
.

[|
UL —

g
y
b
)

it
[T
C

|
-
a)
'
o
™
Y
Q.
=
(D

va/lueF)u“ Qualified Object Name (Also used as incoming PARM

DCL &QUALOBJ *CHAR LEN(20)

/* ODbij ect name only - Bytes 1-10 of fully qualified name */
DCL &OBJ *CHAR LEN(]O) STG(DEFINED) DEFVAR(&QUALOBJ 1)

lerar name onl Bytes 11-20 of fully qualified name °
DCL &LIB CHAR LENX] 0) STG(‘DEFINED) DEFVAR(&QUALOBJ 11)

» The first DCL command declares a 20-character variable in the
program's automatic storage.

’ geh%rféefggrii[%%tc?Féﬂ%?gc?eer%' ‘of th ae"icli'ﬂﬂ %i‘dr\?aer‘i'a%f%m which
" be ised to reference the IRRRTS Anaraas BYRRE gGliAva <@

» Very useful for situations where you are pulling apart a defined
data structure!

[Y | | u
N | iy
v hhd

1IN

W E—
r gl Y N
ST E OB

rFra

B o oz =
AQII

J

e

D

=X
[T

L/

I
1

=1

/ * Character variable */
DCL &CHAR4 *CHAR4 LEN(48)
/* Pointer variable defined in &CHAR4 */

DCL _&PTR *PTR STG(*DEFINED)
DEFVAR(&CHAR4 17)

» The second DCL command declares a pointer
\é:%jrll—la,bl?ll(eélm bytes 17 through 32 of the variable

- Pointers are 16 bytes long.

» Essentially this points out that it's not relevant
which type of variable the hosted variable is.

Declare CL Variable

Type choices,

press Eknter.

CL wvariable name

Type
Storage

Length of wvar
Length
Decimal pos

Initial value

iable:

itions

(DCL)

(New)

*AUTO

Variable name
*DEC, *CHAR,
*LGL, *INT...
*AUTO, *BASED,
*DEFINED

Number
Number

Basing pointer variable
Defined on variable:

CL variable
Position
Address:
CL variable
Offset

name

name

Variable name

Variable name
1-32767

Variable name
0-32766

lthl- — e e el Ceew S — - —

/ * A pointer variable */
DCL &PTR3 *PTR

* A variable based on H(I]e pointer variable above. */

/ T+
Db o SGHARS, 5 CHAR LEN(10) STG(*BASED)

/* A character variable in automatic storage */
DCL &ACHAR *CHAR LEN(10)

CHGVAR VAR(&PTR3) VALUE(%ADDRESS(&ACHAR))

* FHEVAR sommand plaeg i pddress of SACHAR

) SRaeméesr{%erggce) Xgrg{a&o&_&&_l—lARS will reference the

» Much “cleaner” than using %BIN
- Use the value natively
» Useful for
> passing parameters to OS/400 APIs
> passing parameters to other HLL programs
» Command PARM statement will allows
RTNVAL(*YES) for integer parameters

R O O S e

>

=t
()
(@
q)
5|-1D
(@)
D
(0]
|
<
C
/
C

<
Q)

» New TYPE values on DCL statement
» Values

> *INT - Integer
> *UINT Unsigned Integer
- chosen for consistency with PARM TYPE values

» LEN(2) and LEN(4) supported

» OPM does not fully support 8-byte integers
internally so they cannot be supported in the
language.

e &

? i
f

¢»)
W
ca:ii

=3

sav \/Avrint
‘A1 VvalilaQa

()
(@

L

» New LEN(8) supported in CLLE

» Support for both types
*INT - Integer
> *UINT Unsigned Integer
» As stated previously, OPM does not fully
support 8-byte integers internally so no
LEN(8) support coming there.

» This is important support for API calls as
more and more are utilizing 8 byte support.

l

i

)
)
)

a
»

C
e~
=t
| E‘I
e
=ik
C
(@)
)
:JI'
ﬁl::»

On the following slide we’ll examine a sample program
that %uts together Pointers, Offsets, Based and Defined
variables.

Variable &VVAR is a text variable of 500 characters.

Variable &ARY is a text variable that is based on pointer
&PTR and is 50 bytes long.

Variables &BYTO110, &BYT1120 etc are defined as
overlaying variable &ARY.

Pointer &PTR is initialized to the first position of &VAR
thus overlaying &ARY and the &BYTnnnn variables.

In the loop the offset is incremented by 50 bytes thus
giving us a view of each 50 bytes in the array.

This technique is well used in parsing the data coming
back from API calls in User Spaces.

PGM

DCL VAR (&VAR) TYPE (*CHAR) LEN(500) +

VALUE ('alll456789a222456789a333456789a444456789a555456789+
371114567897222456789733345678974444567897)5554567897)

DCL &PTR TYPE (*PTR)

DCL &ARY TYPE (*CHAR) STG(*BASED) LEN(50) BASPTR(&PTR)

DCL &BYTO0110 TYPE (*CHAR) STG(*DEFINED) LEN(10) DEFVAR(&ARY 01)

DCL &BYT4150 TYPE (*CHAR) STG(*DEFINED) LEN(10) DEFVAR(&ARY 41)

DCL &OF'S TYPE (*INT) LEN (4) VALUE (1)

CHGVAR &PTR $%ADDRESS (&VAR) /* Pointer points at var &VAR */

/* As a result &ARY now overlays first 50 bytes of &VAR */

CHGVAR &OFS %$OFFSET (&PTR) /* Offset initialized to first byte */

DOFOR VAR (&INT) FROM(1) TO(10) /* Actual string parse code
*/
CHGVAR &TEXT (&BYT0110 || '=' || &BYT1120 || '=" ||
&BYT2130 || '"='" || &BYT3140 || '=' || &BYT4150)

SNDPGMMSG MSGID (CPF9898) MSGF (QCPFMSG) MSGDTA (&TEXT) +
TOPGMQ (*EXT) MSGTYPE (*STATUS)

DLYJOB DLY (2)

CHGVAR &OFS (&OFS + 50)

SOFFSET (&PTR) &OFS

» New special value *NULL
» Used for setting or testing pointer variables.
- Example DCL &PTR *PTR ADDRESS(*NULL)

» IF (&PTR *EQ *NULL)

- Test easily for a null pointer value preventing
execution errrors.

lllll
el sRpda s /ma & A &Sl &= == s S=s 1A 308 BLE /. B F urempapem il s =
lllllllll

LIER S

<
U
e B
@]

» Previous limit was 9999 bytes for CL
variables declared as TYPE(*CHAR)

» New limit is 32767 bytes for TYPE(*CHAR)
» DCLF will (still) not generate CL variables for

character fields longer than 9999 bytes in a
record format; same compile-time error

» Limit for TYPE(*CHAR) and TYPE(*PNAME) on
PARM, ELEM, and QUAL command definition
statements stays at 5000 bytes

[} ~ P o [} [}
el sRpda s s &= A &1 = =, S=mss ma 5L J/u 1§ = ouae e I 1 & &=
[=l - % EAd B L 99 F B8 [i — A =i F § A §F B 0 E8 —
Bl A el JFIELE 1 S1 el 17 i N VAL TGCA RS . J

» DCLF will now generate CL variables for
character fields up to 32767 bytes.

i S isa S8 s B
|]

Parameter enhancements

4
<
)
<
<
)
<
<
)
<
<
)

Multiple File Support
Declare Processing Options
Source member Include
Control Flow Enhancements
Subroutines

Command Enhancements
New APl QCAVFYNM

Proxy Command

Command Documentation
Future CL Enhancements

= i
i

Lol §

= A d =N BfF =<

em mm o om o= == ==i._A;=.- e = 0= = = HE
I Yaoolily UV vVdadiuc —VJINO

=

al ai

“J

V)

» CALLPRC (Call Procedure) command
supports calls from ILE CL procedures to

other ILE procedures

» In prior releases, CALLPRC only supported
passing parameters "by reference”

» Can specify *BYREF or *BYVAL special value
for each parameter being passed

» Enables ILE CL to call many Ml and C
functions and other OS/400 procedure APIs

» Maximum numbers of parameters still 300

A e = B D

Ul

w)

=

_r_rA;

e = == —- \ W, >
udll I — VORD

..‘;

SE If1i

0
N

o

-h

Cl

Ui

X

rll:»
Q)
Ufn
El.lb

Fa»

» Previous limit was 40 for PGM and TFRCTL,
and 99 for CALL command

» New limit is 255 parameters for PGM, CALL,
and TFRCTL

» Limit for CALLPRC (only allowed in ILE CL
procedures) will stay at 300

» Number of PARM statements in a CL
command will stay at 99

i S isa S8 s B
|]

Variable Types

Parameter enhancements

Multiple File Support

<
D
)
<
<
)
<
<
)
<
<
)

Declare Processing Options
Source member Include
Control Flow Enhancements
Subroutines

Command Enhancements
New APl QCAVFYNM

Proxy Command

Command Documentation
Future CL Enhancements

R O O S e

» Supports up to 5 file "instances”

» Instances can be for the same file or different
files

» New OPNID (Open identifier) parameter added
to DCLF statement

» Default for OPNID is *NONE
> Only one DCLF allowed with OPNID(*NONE)

» OPNID accepts 10-character name (*SNAME)

> DCLF FILE(LIBA/FILET) OPNID(OPENIDENTS)

)
-

I
c
nv»
e

e
-]

G

')

Yo
\

<
C
=
=2
D
-1
M
W
c
(@)
(@)
@)
o

» If OPNID name specified, declared CL variables
are prefixed by this name and an underscore

» So FLDA is defined as &OPENIDENTS5_FLDA

» OPNID also added to existing file input/output

CL statements
> RCVF

- ENDRCV

- SNDF

- SNDRCVF

> WAIT

CLo: PGM

DCLF FILE (OBJLST) OPNID(P1) /* NEW OPNID */
DCLF FILE (OBJLST) OPNID(P2)
LOOP1: RCVF OPNID (P1) /* NEW OPNID */
MONMSG MSGID (CPF0864) EXEC(GOTO CMDLBL (LOOP1B))
CHGVAR VAR (&COUNT) VALUE (&COUNT + 1)

/* Note OPNID is Prepended to variable name VVVVVVVVVV */

CHGVAR &TOTSIZE VALUE (&TOTSIZE + &P1_ODOBSZ)
GOTO CMDLBL (LOOP1)
LOOP1B: CHGVAR VAR (&TTOTSIZE) VALUE (&TOTSIZE)
CHGVAR VAR (&TCOUNTZ2) VALUE (&COUNT)
CHGVAR VAR (&COUNT) VALUE (0)
LOOP2: RCVF OPNID (P2)
MONMSG MSGID (CPF0864) EXEC(GOTO CMDLBL (LOOPZ2B))
CHGVAR VAR (&COUNT) VALUE (&COUNT + 1)
CHGVAR VAR (&TOBJSIZE) VALUE (&P2_ODOBSZ)

T SNDPGMMSG MSGID(CPF9898) MSGF (QCPFMSG)
L CMDLBL (LOOP2)

‘NNNEIIIIIIIIEE!II-_;

Syntax:
CLOSE OPNID(PT)

» New command CLOSE supports closing DB Files.
> Single OPNID (Open identifier) parameter

- Default for OPNID is *NONE (Consistency!)
» OPNID accepts 10-character name (*SNAME type)
» The next use of RCVF will implicitly reopen the file.
> The record pointer will be reset to the same
record it was the first time.
> This USUALLY means the beginning of the file but

if previously deleted records before that record
are now occupied, they may not be read.

i S isa S8 s B
|]

Variable Types
Parameter enhancements

Multiple File Support

Declare Processing Options

<
<
4
<
<
)
<
<
)
<
<
)

Source member Include
Control Flow Enhancements
Subroutines

Command Enhancements
New APl QCAVFYNM

Proxy Command

Command Documentation
Future CL Enhancements

—
E
u | |

L/c

|

D)

o
A
nr»
W
(@)
Te
@
:I1r
C
wn
||
<
Ui
=3

=tJ
b
.I\
e

b}

C

QHD
-
g

-I::hn

Syntax:

DCLPRCOPT SUBRSTACK(99)

» Indicates the maximum number of

subroutine levels allowed at run time.
> Min value is 20
o Default is 99

o Maximum is 9999

» Must be placed in the ‘DCL Section’ of the
program (Before executables.)

» Only one per program.

[] |
I Ams = o= psm = 0 Des s o s S f g s S8 fF LVesm da g & | &
i FEAN 1 AT B2 BT 11

» Each of the additional parms override the
corresponding parm of the CRTxxx CMD
» These parms have no defaults.
- Allows the CRTxxx Defaults to work.
» Overrides shown on the compile printout.
» Not all parms apply to all CRTxxx CMDs

> i.e. some for OPM only, some for ILE only.

[] |
I Ams = o= psm = 0 Des s o s S f g s S8 fF LVesm da g & | &
I FEAN 1 AT Ea BT 1

» LOG(*JOB *YES *NO)
> LOG CL Commands.
» RTVCLSRC(*YES *NO) [OPM Only]
> Allow retrival of CL Source from compiled object.

» TEXT(‘description goes here’ *SRCMBRTXT *BLANK)

> Place this text on the compiled object.
» USRPRF(*USER *OWNER)

- Specifies which profile to use during run-time for authority
checking.

> Ignored for REPLACE(*YES) on existing PGM

> AU':')(*LIBCRTAUT “CHANGE *ALL *USE *EXCLUDE
aut

- Specifies the authority to users who do not have any explicit
authority to the object.

> Ignored for REPLACE(*YES) on existing PGM

» SRTSEQ(*HEX *JOB *JOBRUN....) or (lib/obj)
- Specifies the sort sequence to use for the job.
> Details on the command ©

» LANGID(*JOBRUN *JOB language-ID)
> Language ID to use for the job.

» STGMDL(*SNGLVL *TERASPACE) [CRTBNDCL only]

> *SNGLVL runs only in a single-level storage activation group
- *TERASPACE runs only in a teraspace activation group.
- DFTACTGRP(*YES) NOT allowed with *TERASPACE

» DFTACTGRP(*YES *NO) [CRTBNDCL only]
- Specifies if the program is associated with the default activation

group.
» ACTGRP(*STGMDL *CALLER *NEW) [ILE CL]

- Specifies the activation group that the ILE CL program runs in.

» BNDSRVPGM(library/name Generic_name *ALL)

- Specifies the service program or programs to search for
unresolved module requests at bind time.

» BNDDIR(*NONE) or (library/directory)
[CRTBNDCL only]

- Specifies the list of binding directories used in symbol resolution.

- Used only if unresolved imports exist after modules and service
programs are considered.

i S isa S8 s B
|]

Variable Types

Parameter enhancements
Multiple File Support
Declare Processing Options

Source member Include

<
<
)
4
<
)
<
<
)
<
<
)

Control Flow Enhancements
Subroutines

Command Enhancements
New APl QCAVFYNM

Proxy Command

Command Documentation
Future CL Enhancements

.ID

Ul -

3
al

s
D
=
F
C
),
Fr
|
cry
<
(@)
Jr—

Syntax:

INCLUDE SRCMBR(ANINCLUDE)
SRCFILE(library/file)

» Defines a source member to include at compile
time.

» SRCMBR Parm defines the source member to
include (required)

» SRCFILE Defaults to *SRCFILE
> *SRCFILE default is the file this CL program is in.

» INCLUDE not allowed within an Included source.
- That is, no nesting.

- = s - = iRnig 1 11) iR A =
AV
ivi 1

ww)
@)

—_ ii g i
UITCLT ITINLULULU/L = |

)
C

Syntax addition for compile commands:
INCFILE(library/file)

» INCFILE Default is *SRCFILE

> Indicates the include members are found in the
same source file as the CL source member being

compiled.

» Specifying a file and optionally a library
overrides the file for any INCLUDE
specifying *SRCFILE

» CRTCLPGM, CRTCLMOD and CRTBNDCL all
support this parm.

INCIUDFE — Additional Detailc
IIN\LCLUL/LL © MAuUuliti 11l CiaAllo 1

Retrieve CL Source enhanced to optionally
retrieve the included source.
RTVINCSRC(*YES, *NO)
» Default is *NO
» Specifying *YES will generate source that
has the included source embedded into it.

> The INCLUDE line is NOT regenerated, rather the
included source represents what was compiled.

» Specifying *NO will include the original
INCLUDE command in the retrieved source

o E—
i

FINCIHLID
iN

[Y [}
L Ny |
A Y
i

N

= i
§

[} [Y | [}
- I EP R M [|
L i | § — A V]

S = IDIVI |

~

W
CJ

'VA
IINULUL/

()
(0]
)
C

» INCLUDE will be supported within INCLUDE
members.

» No limit to the number of includes (in the
O/S anyway) YOU may go crazy if they go
too deep!

[] = mas

= A E s 2=
== B F B \ YR B 8
11

= cVi

*

ouri

m o = —
nm & y 4
AV y 4
I 4

E B
vl 1|

i

Fa -
\ 1

W
C
™

C
)) S

f
Te

» Speaking of retrieving source from CL
Programs!

» Support in the new version will include CLLE
programs.

- *MODULE
- *PGM
- *SRVPGM
- All are supported.

» CRTCLMOD and CRTBNDCL commands get new
parm

- ALWRTVCLSRC
- Default *YES as it is for CRTCLPGM

i S isa S8 s B
|]

Variable Types
Parameter enhancements
Multiple File Support
Declare Processing Options
Source member Include

Control Flow Enhancements

<
<
)
<
4
)
<
<
)
<
<
)

Subroutines

Command Enhancements
New APl QCAVFYNM
Proxy Command
Command Documentation
Future CL Enhancements

‘s-

)

=t

e

L Od

.A

b
b

-II-I
)

Ca

V

A N B =

idrll

E'I"I

S.'

\=- i

)
¢(»)
FII:‘»
e
(@)
|
<
G
p”
G

Additional ‘standard’ control flow commands:
» DOWHILE, DOUNTIL, DOFOR

Each support
> LEAVE
> ITERATE

» CASE

SELECT, WHEN, OTHERWISE, ENDSELECT
25 level nesting

.J
»

A~
l ‘hmmm-ﬂ.

£ | I A N A W4
FE B W W W
\.-\Jllllll\.lll s VaVaVat

|E'1|'!
D

(@
—

3

—

-
=
(Wg)

<
(@)
e
Q
D

LIER S

» Loop starts with the DOxxx statement
- The DOxxx statement supports a label (note this)

» ENDDO marks end of loop
> All types of DO loop use ENDDO

» ITERATE - Discontinue processing
remainder of code before ENDDO and
transfer to label on DOxxx

> Can be the label on the current DOxxx or loops
external to this loop

> If no label given the current DOxxx loop is
assumed

=t

= B

101

W
-
e,
@)
C

-E\‘A-‘ Fe e »
L/IUXXX

L

‘s-

—

4 ¢
I

S.'

\.-

» LEAVE - Discontinue processing remainder
of loop and jump to statement following the

matching ENDDO
> Can be the label on the DOxxx or the DOxxx

loops external to this loop
- If no label given the current DOxxx loop is

assumed

» Can be nested (up to 25 levels)
> i.e. you could have a DOWHILE loop within a

DOFOR loop
o or a DOWHILE inside a DOWHILE etc.

— - " FE—— S

L -
!1r\|n —

DUWRHRILE LQUD = VD

» Same COND support as IF statement in CL
» Evaluates COND at "top" of loop

» A simple example:

DCL VAR(&LGL) TYPE(*LGL) VALUE('1")

DOWHILE COND(&LGL)
. (group of CL commands)
ENDDO

-—-- " FE—— S

HE B R
!"‘! !l‘lll = =

L/JAUJUINIIL LUUG = VD

» Same COND support as IF statement in CL
» Evaluates COND at "bottom" of loop

» A simple example:

DCL VAR(&LGL) TYPE(*LGL) VALUE('O")

DOUNTIL COND(&LGL)
. (group of CL commands)
ENDDO

Syntax:
DOFOR VAR() FROM() TO() BY()

» BY defaults to '1', other parameters are
required

» VAR must be *INT or *UINT variable

» FROM and TO can be integer constants,
expressions, or variables

» BY must be an integer constant (can be
negative)

» FROM/TO expressions are evaluated at loop
initiation; TO evaluated after increment

» Checks for loop exit at "top" of loop

[T

§
|

i

A
MV

O - e e

EESNS

=
4 W |
[

a

rm

» Allowed only within a DOWHILE, DOUNTIL or

DO
» Bot

FOR group
n support LABEL to allow jump out of multiple

(nested) loops

» Bot

TAG:

n default to *CURRENT loop

» LEAVE passes control to next CL statement
following loop ENDDO

» ITERATE passes control to end of loop and tests
oop exit condition

DOXXX

ITERATE TAG
LEAVE TAG

ENDDO /* Iterate transfer here */

/* Leave would transfer here */

Y] _
Rl o= =
i il

r |
L — IN

)
)

g
(0]
=
g
-
[T
X
QMD
(@)
g

LP1: DOUNTIL &FLAG1=0

LP2: DOWHILE &FLAGZ2=1
LPBBY:(Z) DOFOR &COUNT FROM(1) TO(10)

LEAVE /* Jumps to (a) */
LEAVE LP1 /* Jumps to (c) */
ITERATE LP2 /* Jumps to (b) */

ENDDO /* End of DOFOR */
(a) (b) ENDDO /* End of DOWHILE */
ENDDO /* End of DOUNTIL */
(c) /* Statement after ENDDO */

» SELECT starts a group; this command has no
parameters

» There must be at least one WHEN clause

- Has COND and THEN support (like IF)
- To execute multiple statements must use DO/ENDDO
> Unlimited number of WHEN clauses may exist

» There may optionally be one OTHERWISE
> Run if no WHEN statement COND = True
> Single parm of CMD (like ELSE)
- Again needs DO/ENDDO for multiple statements
» ENDSELECT ends group; this command has no
parameters

N~ =1 =i

SELECT /* Begin of select group */

WHEH\I(%%ND((&COUNT *EQ 4) *AND (&COUNT2 *EQ 2))

..some important stuff...
ENDDO

WHEN COND(&COUNT *EQ 6) THEN(DO)
..different important stuff..

ENDDO
WISII!_EH_:RQ_?ND(&COUNT *EQ 3.141592654) THEN(CALLSUBR
OTHERWISE CMD(DO) /* OTHERWISE is optional */
..default stuff..
ENDDO

ENDSELECT /* End of select group */

¥

H e B = |
- = sm = 1 FEPn n =
F AT RN ¥ & ni B S iV

[] o= n = » L] =
ILTUI TIUVW = IDIVI |

~J

i,‘i
S

C

» Select group indent on compile printouts.

» New value *DOSLTLVL for the OPTION()
parameter on:
> CRTCLPGM
> CRTCLMOD
- CRTBNDCL

- This new parm tells the compiler to add a new column
on the left with the nesting level.

» Default is *NODOSLTLVL which is same as
today.

» Supports DO, DOFOR, DOUNTIL, DOWHILE
and SELECT

i S isa S8 s B
|]

Variable Types

Parameter enhancements
Multiple File Support
Declare Processing Options
Source member Include
Control Flow Enhancements

Subroutines

<
<
)
<
<
4
<
<
)
<
<
)
<

New BIFs
Command Enhancements
New APl QCAVFYNM
Proxy Command
Command Documentation
Future CL Enhancements

J

>

@)
C
~F
D
(0]

|
<
Ul
/

A
4

W
-
@)

» All variables are global.
- DCL* not allowed within a SUBR/ENDSUBR pair

» Recursion Allowed? YES!
o Tried that. It works!

» Four Components

> SUBR
- Begin of Subroutine Definition
- ENDSUBR
- End of Subroutine Definition
o CALLSUBR
- Call a Subroutine
> RTNSUBR
- Return from a Subroutine

-3
L P

A
T

= mas

]

= = 2m = = =
llrIIrlIll

u“ u“

U

'/

W
C
~F
D
(0]

Defines the beginning of the subroutine

SUBR SUBR(subroutine_name)
» A tag is optional.
- May not be used to get /nto the subroutine
- Used only to return to it’s beginning from
within it.
- (you know with um, er, coro)

» SUBR cannot be between another
SUBR/ENDSUBR pair (no nesting)

>

o).

= = BEm = = =
lllIil"lll

u Uuu

b}

FII::»

) A
T

\/
B

mmnipy

W
U

' ¢
11

o
it

I U

[T

Defines the end of the subroutine

ENDSUBR RTNVAL(return_var)

- Optional variable must be *INT of LEN(4)

- Can also return a constant

- Value is returned to caller such as error code.
» When execution reaches ENDSUBR

execution passes to the statement following
the CALLSUBR that invoked this subroutine

» ENDSUBR cannot be between another
SUBR/ENDSUBR pair (no nesting)

nNT

B2 B E

14015

>

ﬁ::»

~
-‘&. *"‘% 7N

uiii 11UI1

\/
¥

U1

C)"
C
r,

u

)

\ﬁ

=t
C

Defines another return from subroutine point

RTNSUBR RTNVAL(return_var)
> Optional variable must be *INT of LEN(4)

o Can also return a constant
> Value is returned to caller such as error code.

» Upon execution of RTNSUBR execution
passes to the statement following the
CALLSUBR that invoked this subroutine

) RT_NSUBR Must be between SUBR/ENDSUBR

= mas

==
D
|
<
vl
p
S

1Uu

O

i ou

Q.
(@)

C
Call a subroutine

CALLSUBR SUBR(subroutine_name)
RTNVAL(return_var)

- Optional RTNVAL variable must be *INT of LEN(4)
> Value is return only NOT passed into subroutine.

» May be between SUBR/ENDSUBR pair

SUBR: PGM
DCL &SIGNINT *INT /* Regular Signed Integer */
DCL &SIGNINT2 *INT /* Regular Signed Integer */
DCL &SIGNINTT *CHAR 5 /* Character Representataion */

CHGVAR &SIGNINT 1
DOWHILE COND (&SIGNINT < 100)

CALLSUBR SUBR (SUBR1) RTNVAL (&SIGNINTZ2)
CHGVAR &SIGNINT &SIGNINTZ2
SNDPGMMSG MSGID (CPF9898) MSGF (QCPFMSG) +
TOPGMQ (*EXT) MSGTYPE (*STATUS)
DLYJOB 2
ENDDO

SUBR SUBR(SUBR1) /* Beginning of the subroutine */
CHGVAR &SIGNINT (&SIGNINT + 1)
IF (&SIGNINT > 50) THEN(DO)
RTNSUBR RTNVAL (&SIGNINT) /* Return from here */
ENDDO
CHGVAR &SIGNINT (&SIGNINT + 10)
CALLSUBR SUBR (SUBR1) RTNVAR(&SIGNINT)
NDSUBR RTNVAL (&SIGNINT) /* End of the subroutine */

i S isa S8 s B
|]

Variable Types

Parameter enhancements
Multiple File Support
Declare Processing Options
Source member Include
Control Flow Enhancements

Subroutines

New BIFs

<
<
)
<
<
)
4
4
)
<
<
)
<

Command Enhancements
New APl QCAVFYNM
Proxy Command
Command Documentation
Future CL Enhancements

.ﬂ
_ I
y 4

I
1<

II-IIIJI

‘ID!::»

*l}u"'la'
(@)
(@)

» Three new BIFS are provided by this PTF
> %TRIM - Trim from both ends
> %TRIML - Trim from Left (leading) end.
> %TRIMR - Trim from Right (trailing) end.

Each has Two parms.
1) Variable to Trim
2) Character(s) to Trim

%TRIM(&VAR) — Trim Spaces (default)
%TRIMR(&VAR ‘*.’) — Trim Splats and periods.
%TRIML(&VAR &CHARS) - Trim whats in &CHARS

=} [|
B s s bise 1 s~ A H H = s B = =
IIIIIIII

DCL &VAR *CHAR 40 ' This is a Text Variable.
SNDMSG MSG(™ || %TRIM(&VAR) || ™)

» "This is a Text Variable."

SNDMSG MSG("™ || $TRIML(&VAR) || ")
» "This is a Text Variable. N
SNDMSG MSG(™ || $TRIMR(&VAR “. °) || ™) [<-.space]

» ' This is a Text Variable” [spaces and . Trimmed]

» Works in CL, CLLE, and CL Modules
» Valid anywhere a text variable is valid.
» Second parm default is * * (spaces)

» If trim results in nothing a string of blanks is
returned.

» CAN Compile back to:
- IBMi 7.1
- IBMi 6.1
> 15/0S V5R4

i S isa S8 s B
|]

Variable Types

Parameter enhancements
Multiple File Support
Declare Processing Options
Source member Include
Control Flow Enhancements
Subroutines

New BIFs

Command Enhancements

<
<
)
<
<
)
<
4
)
<
<
)
<

New APl QCAVFYNM
Proxy Command
Command Documentation
Future CL Enhancements

B s o S A s e s a

= = =
llllllllll

» *CMD objects can now retrieve prompt text from
message members

» CMD definition enhanced.

> PROMPT parm can be text or MSGID
> If MSGID new PMTFILE parm determines where to look for

the message text.
- Additional *STATIC or *DYNAMIC parm determines if prompt
text lookup is done at compile time or run time.

*NOTE

» Beginning with IBM i 6.1 this capability is used for all
command objects

» The result of this is that commands will no longer be

shipped in the QSYS29nn libraries making the
controlling of authorities to them simpler and easier.

» CMD definition to pull into the source many

parms which currently must be specified on
the CRTCMD

> MAXPOS(0-99 *NOMAX)
- Maximum Positional Parameters

> ALLOW(*INTERACT *BATCH ...)

- Where allowed to Run
- MODE(*ALL *PROD ...)
- Mode in which valid

» Pretty much all the parms from CRTCMD
» Tooo many to list here! (Press F4!)

i S isa S8 s B
|]

Variable Types

Parameter enhancements
Multiple File Support
Declare Processing Options
Source member Include
Control Flow Enhancements
Subroutines

Command Enhancements

New APl QCAVFYNM

<
<
)
<
<
)
<
4
)
<
<
)

Proxy Command
Command Documentation
Future CL Enhancements

» Verify Name.
> This API verifies an input value to determine if it is a valid
system name. (CPFO19D means, NO!)

» Parms are:
- CHAR(*)Data
Format of data ‘VFYNO10O’

- CHAR(8)
> CHAR(*)Error.
» VFYNO100 contains (not a complete list)

CCSID
Case indicator (0=do not monocase, 1=monocase first)
Name type (*NAME *SNAME *CNAME)

(e]

o

(e]

Name to be verified.

o

i S isa S8 s B
|]

Variable Types

Parameter enhancements
Multiple File Support
Declare Processing Options
Source member Include
Control Flow Enhancements
Subroutines

Command Enhancements
New APl OCAVFYNM

Proxy Command

<
<
)
<
<
)
<
<
)
<
<
)

Command Documentation
Future CL Enhancements

-

rw
[

=

)
>

A
4

=1

>

5|-1D
c
(V)]
c.
[®]
[®)]
S)
]
|
<
(W

mam e w

UXY

J
—
C
-‘|l
—-—
=

G

™

» Create a command in one library that references a

command in another library
> Proxy command has no parms it’s just a pointer: ‘He’s over

there->’
» CRTPRXCMD, CHGPRXCMD used to create and

change them i.e.
CRTPRXCMD CMD(QGPL/SOMECMD)

TGTCMD(MYLIBRARY/MYCMD)
REPLACE(*NO)
» Proxy commands can be chained 5 levels
» Use of CHGCMD or CHGCMDDFT operates on the
end target command not the proxy.
- YOU HAVE BEEN WARNED. ©

i S isa S8 s B
|]

Variable Types

Parameter enhancements
Multiple File Support
Declare Processing Options
Source member Include
Control Flow Enhancements
Subroutines

Command Enhancements
New APl QCAVFYNM

Proxy Command
Command Documentation

<
<
)
<
<
)
<
<
)
I
)

Future CL Enhancements

T S ey Y N
lllll

New GENCMDDOC command

» Run it Twice
> First create a shell PNLGRP source with:
GENCMDDOC CMD(YOURLIB/YOURCMD) GENOPT(*UIM)
- You must complete the generated PNLGRP with text
- Create the PNLGRP and assign to the command
- Rerun GENCMDDOC to make nice with the html
- Second run create HTML documentation for the

command
GENCMDDOC CMD(YOURLIB/YOURCMD) GENOPT(*HTML)

- Uses the command object (not source)
- Adds any UIM help (PNLGRP) text to the HTML

i S isa S8 s B
|]

Variable Types
Parameter enhancements
Multiple File Support
Declare Processing Options
Source member Include
Control Flow Enhancements
Subroutines

Command Enhancements
New APl QCAVFYNM
Proxy Command
Command Documentation

VvV (V VvV VvV VvV VvV VvV VvV VvV VvV Vv ©9

Future CL Enhancements

]]
I BF N =
u AV

-

(@)
g 3
—

‘)
I-II|=
g
T
=f
D
O
D
(@)
-
(@)

~J Tl

» A new DBGENCKEY (Debug encryption key)
narameter on CRTCLMOD and CRTBNDCL

commands

» Key will be used when DBGVIEW(*LIST) is

specified to encrypt the debug listing view data

» DBGENCKEY will allow a key up to 16 bytes

ong (shorter key values get padded with

hlanks)

» 5250 and GUI debug tools will ask for
encryption key before showing the listing view

Note that similar support is planned for ILE RPG,
ILE COBOL, and ILE C/C++ compilers

- mea= =
||

=2 =
& 45 W N |

b

))

C
<
s
=
(V]

»

-'I i’ﬁ! i’ﬁ 40 4
Uil UL CUITIJII

—
—y
Illlc:i;

» V5R3 was the biggest release for CL compiler
enhancements since ILE CL compiler in V3R]
- Most new CL compiler function since System/38

» IBM i 5.4, 6.1 and 7.1 continue the parade.
» But They’re not done yet!

» Rochester is currently working on the next set
of enhancements

» They are looking for early feedback & missed
function

» Cards and letters to Guy Vig
gwvig@us.ibm.com

II‘
)

— B e - u =
{ I'i.

v

= B = B o= =

s
| |

4
[

o
=
o
»
W

C

+
1L

=]
)
)
gl::»
ﬁt:»

i] i"-a
Vil .

C

» Enhance CVTDAT to support larger year range

» Com iIIer option to keep unreferenced CL
variables

) %18)%130/SELECT levels on compiler listing

» New or extended data types for CL variables
- *CHAR variables with LEN up to 16 MB
> *DEC variables with LEN up to 31 digits
> *INT and *UINT variables with LEN(8) DONE

» glr;] Lex—dlmensmn arrays and array notation

» More string functions:
> %CHAR to convert *INT or *DEC to character
> %TRIM to remove trailing blanks or other character

» Support variable-length parameter list on PGM
» Support 31-character CL variable names

II‘
)

_— s
| |

FAF VY
11

)
)
)
)

min
L

b

o
Y
|
e
Y
a
o
M)

)
C

C

<
gl::»
ﬁt:»
=
W

Uil I i

C
C

» Support compile from stream file

» Support structures and structure field reference
notation

» Support RTNVAL parm on PGM command (ILE)

» Support “soft remove” of obsolete *CMD
parameters

» Increase MAX limit on PARM and ELEM
» Support conditional prompting for *PMTRQS parms

» Allow more types of command processing code:
ILE procedure in a service program
> Java method in a .jar or .zip stream file

» Support *PTR for TYPE on PARM statement
» SQL pre-compiler

A;#-

LS

= ==

B = BN =ua-=
I JIHUVWV=U

‘\ “s-'

PDIrov

B s

=

sl = ==
JIICT I

_r‘;"

~—~i .
L UCUII

- E"ii |
T
C
(V)
FIE:»

» Allow RTVCLSRC from ILE objects DONE
» Ship CL header includes in QSYSINC library

» Increase maximum length of a CL command
string

» New GENCLSRC command (like GENCSRC)

- Generate CL for record format without DCLF
overhead

> GCeIOIel:)rate command processing program from

» Relax command change exit program
restrictions

I_Egport longer object name syntax (OPM and

» Tighter integration with RSE and WDSc tools

)
>

i

a
o

S

{Ai
| i

» Plan
- Add

b
)

te

= -

b}

-4
A V.,

\'/

|
B ee »
EENF

1V

)

C
Q.
)

()
)
Q
gl::»
al::»
~t
wh

T T
ul L

to continue making enhancements
functionality

- Remove limits
- Reduce frustration

» Evolutionary, not revolutionary, changes

» Cont
» Cont
» Liste

inue delivering new function via *CMDs
inue to integrate CL with developer tools
n to customers!

Rochester wants to deliver enhancements that will

delig
partn

CIf T

nt IBM i customers, including business
ers

ney're hitting the mark, tell an IBM exec

o If T

ney’ve missed, tell Guy Vig

(gwvig@us.ibm.com)

OF om s gmgo B H HA g gy G

» THE IBM Infocenter:
http://www.ibm.com/systems/i/infocenter

» Control Language in Infocenter:

publib.boulder.ibm.com/infocenter/iseries/v7r1mO0/topic/cl
finder/finder.htm

7
1

4

i
ng?

n
o

y
)
b

[4
irs
BE

(AN

)
)
)
)

)
o
M

Ry
!

T:‘- i/
1 AN\

~
C
—
-t
U
==t
C

V)

The CL Language has moved forward SIGNIFICANTLY since
2004, your coding should too.

Use of the new Control flow enhancements should make
EO(S'Ir'rCI)u'Ch more readable code and the abolishment of

Source includes should help with standardizing code and
centralizing maintenance.

Pointers combined with offsets and based variables can

greatly simplify processing of users spaces returned by
APIs.

Subroutines can greatly reduce the incidence of duplicated
code and improve reliability and maintainability.

Many things cannot be done in CL and require CLLE (ILE)
yet nothing in CL cannot be done in CLLE. MOVE!

IBM is serious about enhancing CL and has show this
commitment for more than 5 years and more is coming.

5

Z
C

[T

Advanced
Tachnical
Expert

How to contact me:

Larry D Bolhuis

Frankeni Technology Consulting, LLC.
Ibolhuis@frankeni.com
www.frankeni.com

Franken

